IADC Italian Arctic Data Center ERDDAP
Easier access to scientific data
log in    
Brought to you by CNR-ISP IADC Portal    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Aerosol scattering and absorption coefficients at the Gruvebadet Aerosol
Laboratory (Svalbard)
Subscribe RSS
Institution:  CNR   (Dataset ID: aerosol_optical_gvb)
Range: longitude = 11.86587 to 11.86587°E, latitude = 78.92136 to 78.92136°N, time = 2021-01-01T01:00:00Z to 2021-12-31T23:00:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  station_id {
    String actual_range 
"Gruvebadet
Gruvebadet";
    String cf_role "timeseries_id";
    String long_name "Id of the station in the TimeSeries";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range 78.92136, 78.92136;
    String axis "Y";
    String ioos_category "Location";
    String long_name "latitude position of the station";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range 11.86587, 11.86587;
    String axis "X";
    String ioos_category "Location";
    String long_name "longitude position of the station";
    String standard_name "longitude";
    String units "degrees_east";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.6094628e+9, 1.6409916e+9;
    String axis "T";
    String ioos_category "Time";
    String long_name "Date and time of the measurement";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  aerosol_absorption_coefficient_467nm {
    Float32 _FillValue NaN;
    Float32 actual_range -0.252, 4.257;
    String comment "See full report.";
    String ioos_category "Unknown";
    String long_name "Aerosol absorption coefficient (1 hour average) measured at 467 nm and standard temperature and pressure";
    String standard_name "volume_absorption_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles";
    String units "m^-1";
  }
  aerosol_absorption_coefficient_530nm {
    Float32 _FillValue NaN;
    Float32 actual_range -0.272, 3.353;
    String comment "See full report.";
    String ioos_category "Unknown";
    String long_name "Aerosol absorption coefficient (1 hour average) measured at 530 nm and standard temperature and pressure";
    String standard_name "volume_absorption_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles";
    String units "m^-1";
  }
  aerosol_absorption_coefficient_660nm {
    Float32 _FillValue NaN;
    Float32 actual_range -0.296, 3.541;
    String comment "See full report.";
    String ioos_category "Unknown";
    String long_name "Aerosol absorption coefficient (1 hour average) measured at 660 nm and standard temperature and pressure";
    String standard_name "volume_absorption_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles";
    String units "m^-1";
  }
  aerosol_scattering_coefficient_530nm {
    Float32 _FillValue NaN;
    Float32 actual_range 0.334, 29.574;
    String comment "See full report.";
    String ioos_category "Unknown";
    String long_name "Aerosol scattering coefficient (1 hour average) measured at 530 nm and standard temperature and pressure";
    String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles";
    String units "m^-1";
  }
 }
  NC_GLOBAL {
    String acknowledgement "The dataset is provided in the framework of the SIOS core data curation call [Research Council of Norway, project number 2022_SCD_01, Svalbard Integrated Arctic Earth Observing System - Knowledge Centre, operational phase]";
    String cdm_data_type "TimeSeries";
    String cdm_timeseries_variables "station_id,latitude,longitude";
    String Conventions "ACDD-1.3, COARDS, CF-1.6";
    String creator_email "mauro.mazzola@cnr.it";
    String creator_name "CNR";
    String creator_type "institution";
    String creator_url "https://iadc.cnr.it";
    Float64 Easternmost_Easting 11.86587;
    String featureType "TimeSeries";
    Float64 geospatial_lat_max 78.92136;
    Float64 geospatial_lat_min 78.92136;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 11.86587;
    Float64 geospatial_lon_min 11.86587;
    String geospatial_lon_units "degrees_east";
    String history 
"For the scattering coefficient the truncation error correction is performed according to Muller et al. (2009) and assuming a scattering angstrom exponent of 1.15 (Schmeisser et al., 2018). For absorption coefficient, the PSAP measurements are corrected according to Bond et al. (1999) for flow and sampling filter area and according to Virkkula et al. (2011) for loading and shadowing effect, using simultaneous scattering coefficient measurements. For all the aerosols instruments, quality control procedures will include periodic flow calibration, and blank measurements using a HEPA filter to detect potential leak and verify the instrumental detection limit. In addition, the aethalometer quality assurance procedure will include the leak check to test and quantify the presence potential leaks, the stability test to verify sensors noise, and the optical performance test to check for the detector response at the different operating wavelengths. Both absorption and scattering coefficient measurements are normalized at standard pressure and temperature conditions (1 atm and 0 degC), averaged over a 1-hour period, and provided at all available wavelengths.
2024-04-29T15:19:24Z (local files)
2024-04-29T15:19:24Z https://data.iadc.cnr.it/tabledap/aerosol_optical_gvb.das";
    String infoUrl "https://iadc.cnr.it";
    String institution "CNR";
    String keywords "aerosol absorption coefficient, aerosol scattering coefficient";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "CC BY-NC: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.";
    Float64 Northernmost_Northing 78.92136;
    String product_version "2022";
    String references "Müller, T., Nowak, A., Wiedensohler, A., Sheridan, P., Laborde, M., Covert, D.S., Marinoni, A., Imre, K., Henzing, B., Roger, J.C., Martins dos Santos, S., Wilhelm, R., Wang, Y.Q., de Leeuw, G. (2009) Angular Illumination and Truncation of Three Different Integrating Nephelometers: Implications for Empirical, Size-Based Corrections, Aerosol Science and Technology, 43:6, 581-586, DOI: 10.1080/02786820902798484; Schmeisser, L., Backman, J., Ogren, J. A., Andrews, E., Asmi, E., Starkweather, S., Uttal, T., Fiebig, M., Sharma, S., Eleftheriadis, K., Vratolis, S., Bergin, M., Tunved, P., and Jefferson, A.: Seasonality of aerosol optical properties in the Arctic, Atmos. Chem. Phys., 18, 11599-11622, https://doi.org/10.5194/acp-18-11599-2018, 2018; Bond, T.C., Anderson, T.L., Campbell, D. (1999) Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols, Aerosol Science and Technology, 30:6, 582-600, DOI: 10.1080/027868299304435; Virkkula, A., Backman, J., Aalto, P. P., Hulkkonen, M., Riuttanen, L., Nieminen, T., dal Maso, M., Sogacheva, L., de Leeuw, G., and Kulmala, M.: Seasonal cycle, size dependencies, and source analyses of aerosol optical properties at the SMEAR II measurement station in Hyytiälä, Finland, Atmos. Chem. Phys., 11, 4445-4468, https://doi.org/10.5194/acp-11-4445-2011, 2011.";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 78.92136;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "At the Gruvebadet Aerosol Laboratory (GAL) aerosol scattering coefficient is measured at a single wavelength (530 nm) using a Radiance Research nephelometer. Data is acquired continuously at 1-minute time resolution. Aerosol light absorption is measured at three wavelengths with a Radiance Research PSAP at 1-minute time resolution at 467 nm, 530 nm, and 660 nm.";
    String time_coverage_end "2021-12-31T23:00:00Z";
    String time_coverage_start "2021-01-01T01:00:00Z";
    String title "Aerosol scattering and absorption coefficients at the Gruvebadet Aerosol Laboratory (Svalbard)";
    Float64 Westernmost_Easting 11.86587;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.23
Disclaimers | Privacy Policy | Contact